Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2051.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
  <head>
    <title>UTas ePrints - Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes</title>
    <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
    <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
    <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
    <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
    <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
    <link rel="Top" href="http://eprints.utas.edu.au/" />
    <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
    <meta content="Solomon, M." name="eprints.creators_name" />
<meta content="Gemmell, J.B." name="eprints.creators_name" />
<meta content="Zaw, K." name="eprints.creators_name" />
<meta content="Mike.Solomon@utas.edu.au" name="eprints.creators_id" />
<meta content="Bruce.Gemmell@utas.edu.au" name="eprints.creators_id" />
<meta content="Khin.Zaw@utas.edu.au" name="eprints.creators_id" />
<meta content="article" name="eprints.type" />
<meta content="2007-10-09 16:44:37" name="eprints.datestamp" />
<meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
<meta content="show" name="eprints.metadata_visibility" />
<meta content="Nature and origin of the fluids responsible for forming the Hellyer
Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes " name="eprints.title" />
<meta content="pub" name="eprints.ispublished" />
<meta content="260100" name="eprints.subjects" />
<meta content="restricted" name="eprints.full_text_status" />
<meta content="Hellyer; Tasmania; Australia; Massive sulphide deposit; Stable isotopes" name="eprints.keywords" />
<meta content="Definitive version is available online at http://www.sciencedirect.com/" name="eprints.note" />
<meta content="The Hellyer massive sulphide deposit lies within the Mount Read Volcanics province of western Tasmania. Before mining, it consisted largely of pyrite, sphalerite, galena, arsenopyrite and chalcopyrite, and was overlain by discontinuous barite–sulphide and/or silica–sulphide assemblages. It overlay a downward-tapering cone of hydrothermally altered rocks that shows concentric
mineral zonation and contains steeply inclined veins containing sulphide and/or barite. New laser ablation and existing conventional sulphur isotopic compositions of sulphides from the massive sulphide ore range from -5.0 per mil to 12.2 per mil. There is no significant spatial variation in sulphur isotopic composition in the sulphide ore, or evidence of significant change in the
textural paragenesis, but there is considerable variation at millimetre scale within and between minerals. Apart from the few negative values, which may be of biogenic origin, the sulphur data can be explained by mixtures of sulphur reduced from seawater sulphate and that derived directly or indirectly from magma. The sulphur of the barite cap and the barite veins in the footwall (mostly 33.5–46.0 per mil) is probably also derived from seawater sulphate, and radiogenic 87Sr/86Sr values in the barite (0.70989–0.71144) suggest fluid circulation deep into the basement. delta 34 S values of disseminated sulphides in the footwall
alteration cone are like those of overlying ore, the aqueous sulphur being totally reduced due to low fluid velocities and protracted rock interaction. However, unusually high delta 34 S sulphide values (up to 41.4 per mil) are found in some of the footwall vein sulphides, probably because in these veins the fluid velocities are enhanced and rock interaction limited, so that pyrite
supersaturation may occur before reduction of entrained seawater sulphate is complete. High delta 34 S sulphide values (up to 45.6 per mil) also occur in ‘‘unaltered’’ volcanic rock outside the alteration cone and may be the product of local convection of seawater prior
to, during, or (most probably) after massive sulphide mineralization. Fluid delta 18 O values calculated from isotopic analyses of quartz in footwall veins (8.5–11.8 per mil) and Th data range between 4.4 per mil and 3.1 per mil. Dolomite occurs with chlorite in the core of the footwall alteration cone immediately below the massive
sulphide. Its isotopic composition (delta 13 C=1.5 to 2.8, delta 18 O=8.2–18.3 per mil) may reflect precipitation from an acid, seawaterderived, fluid having delta 13 C=1 per mil(the ambient seawater value), and delta 18 O ranging from 0 per mil to 6 per mil, or, alternatively, its
composition is the result of mixing between modified seawater at 150 degrees C (delta 18 O=6 per mil) with 1% of fluid at 350 degrees C having delta 13 C= -6 and delta 18 O=0 per mil. Dolomites in the footwall veins (delta 13 C= -1.8 to 1.7, delta 18 O= 9.3–14.2 per mil) could be derived from an acid, seawater-derived fluid with negative delta 18 O values, or a fluid that has interacted with 600–700 Ma old, 13 C-enriched carbonates in the deep footwall during convective circulation. Both the chlorite-associated and the vein carbonates contain highly radiogenic Sr, possibly derived from Devonian metamorphic fluids.
A re-interpretation of the fluid inclusion data of Khin Zaw et al. [Ore Geol. Rev. 10 (1996) 251] shows that there are three groups of fluids in the quartz of veins in the altered footwall, viz. (a) saline (6.6–14.8 wt.%) with Th = 170–246 degrees C, high K/Na, K/Ca and K/Fe values (fluid 1); (b) of similar salinity and temperature but with low K/Na, K/Ca and K/Fe values (fluid 2); and
(c) an additional fluid of low salinity (2.9–7.0 wt.%) with Th = 289–322 degrees C, element ratios unknown (fluid 3). Fluid 1 has cation ratios like those of magmatic fluids in the K-silicate and phyllosilicate zones of the Panguna and Endeavour 26N porphyry copper deposits. Combined with the lack of alternative source of salts in the pre-ore rock sequences at Hellyer, fluid 1 is thought to be at least partly magmatic. Fluid 2 has cation ratios like those of modern black smoker and Kuroko ore-forming
fluids, and was probably derived from both magmatic fluid and seawater; fluid 3 may be evolved seawater like that forming the deposits of the Hokuroku Basin.
It is suggested that a pluton or plutonic complex of mixed crustal and lithospheric mantle parentage, like that of the volcanic rocks hosting the Hellyer orebody, was emplaced at several km depth below the deposit during faulting related to crustal extension. The heated zone over and around the pluton displaying plastic behaviour was sealed off from the overlying brittle zone in which groundwater (modified seawater) underwent convection due to heat transfer across the brittle-plastic boundary.
The seal was broken intermittently due to tectonic extension or increased fluid pressure in the pluton, and magmatic fluid joined with convecting groundwater in the rising plume, leading to fluid mixing. Upward flow was focused on the Eastern Fault, the fracture system responsible for forming the basin in which the ore sulphides were sedimented." name="eprints.abstract" />
<meta content="2004-08" name="eprints.date" />
<meta content="published" name="eprints.date_type" />
<meta content="Ore Geology Reviews" name="eprints.publication" />
<meta content="25" name="eprints.volume" />
<meta content="1-2" name="eprints.number" />
<meta content="89-124" name="eprints.pagerange" />
<meta content="10.1016/j.oregeorev.2003.11.001" name="eprints.id_number" />
<meta content="TRUE" name="eprints.refereed" />
<meta content="0169-1368" name="eprints.issn" />
<meta content="http://dx.doi.org/10.1016/j.oregeorev.2003.11.001" name="eprints.official_url" />
<meta content="Adabi, M.H., 1997a. Application of carbon isotope chemostratigraphy
to the Renison dolomites, Tasmania: a Neoproterozoic
age. Australian Journal of Earth Sciences 44, 767– 775.
Adabi, M.H., 1997b. Sedimentology and geochemistry of Upper
Jurassic (Iran) and Precambrian (Tasmania) carbonates.
Unpublished PhD thesis, University of Tasmania, Hobart.
400 pp.
Ayres, D.E., 1979. The mineralogy and chemical composition of the
Woodlawn massive sulphide orebody. Journal of the Geological
Society of Australia 26, 155–168.
Benning, L.G., Wilkin, R.T., Barnes, H.L., 2000. Reaction pathways
in the Fe –S system below 100 jC. Chemical Geology
167, 25–51.
Berry, R.F., Crawford, A.J., 1988. The tectonic significance of
Cambrian allochthonous mafic – ultramafic complexes in Tasmania.
Australian Journal of Earth Sciences 35, 523– 533.
Berry, R.F., Holm, O., 2001. The structure of northwestern Tasmania.
Field Guide-Geological Society of Australia, Specialist
Group in Tectonics and Structural Geology 11, 1– 52.
Black, L.P., Seymour, D.B., Corbett, K.D., Cox, S.E., Streit, J.E.,
Bottrill, R.S., Calver, C.R., Everard, J., Green, G.R., McLenaghan,
M.P., Pemberton, J., Taheri, J., Turner, N.J., 1997. Dating
Tasmania’s oldest geological events. Tasmanian Geological Survey
Record 1997/15, 57 pp.
Bradley, A., 1997. The geology and genesis of the chlorite– carbonate
alteration in the footwall of the Hellyer volcanic-hosted
massive sulphide (VHMS) deposit. Unpublished Honours B.Sc.
thesis, University of Tasmania, Hobart. 101 pp.
Brasier, M.D., 1993. Towards a carbon isotope stratigraphy of the
Cambrian system: potential of the Great Basin succession. Geological
Society of London Special Publication 70, 341– 350.
Brooks, C., 1966. The rubidium– strontium ages of some Tasmanian
igneous rocks. Journal of the Geological Society of Australia
13, 457– 469.
Brown, A.V., 1989. Eo–Cambrian–Cambrian. Geological Society
of Australia Special Publication 15, 47– 83.
Brown, A.V., Findlay, R.H., McClenaghan, M.P., Seymour, D.B.,
1991. Synopsis of the regional geology of the Macquarie Harbour,
Point Hibbs, and Montgomery 1:500 000 map sheets.
Tasmanian Division of Mines and Mineral Resources, Report
1991/21, 12 pp.
Bryndzia, L.T., Scott, S.D., Farr, J.E., 1983. Mineralogy, geochemistry,
and mineral chemistry of siliceous ore and altered
footwall rocks in the Uwamuki 2 and 4 deposits, Kosaka mine,
Hokuroku district, Japan. Economic Geology Monograph 5,
507– 522.
Burnham, C.W., 1979. Magmas and hydrothermal fluids. In:
Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits,
2nd edition Wiley, New York, pp. 71– 136.
Callaghan, T., 2001. Geology and host– rock alteration of the Henty
and Mount Julia gold deposits, western Tasmania. Economic
Geology 96, 1073– 1088.
Calver, C.R., 1996. Reconnaissance isotope chemostratigraphy of
Neoproterozoic carbonates rocks in western Tasmania. Tasmanian
Geological Survey Record 1996/10 (19 pp.).
Cathles, L.M., 1983. An analysis of the hydrothermal system responsible
for massive sulphide deposition in the Hokuroku Basin
of Japan. Economic Geology Monograph 5, 439– 487.
Cathles, L.M., 1993. Oxygen isotope alteration in the Noranda
mining district, Abitibi greenstone belt, Quebec. Economic Geology
88, 1483–1511.
Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I.,
1980. The age curves of sulfur and oxygen isotopes in marine
sulfate and their mutual interpretation. Chemical Geology 28,
199– 260.
Clayton, R.N., Mayeda, T.K., 1963. The use of pentafluoride in the
extraction of oxygen from oxides and silicates for isotopic analysis.
Geochimica et Cosmochimica Acta 27, 43–52.
Converse, D.R., Holland, H.D., Edmond, J.M., 1984. Flow rates in
the axial hot springs of the East Pacific Rise (21jN): implications
for the heat budget and the formation of massive sulphide deposits.
Earth and Planetary Science Letters 69, 159–175.
Corbett, K.D., 1992. Stratigraphic-volcanic setting of massive sulphide
deposits in the Cambrian Mount Read Volcanics, Tasmania.
Economic Geology 87, 564–586.
Crawford, A.J., Corbett, K.D., Everard, J.L., 1992. Geochemistry of
the Cambrian volcanic-hosted massive sulphide-rich Mount
Read Volcanics, Tasmania, and some tectonic implications. Economic
Geology 87, 597– 619.
Davidson, P., 1998. The Murchison Granite. Unpublished Honours
B.Sc. thesis, University of Tasmania, Hobart. 128 pp.
Downs, R.C., 1993. Syn-depositional fault controls on the Hellyer
volcanic-hosted massive sulphide deposit. Unpublished M.Sc.
thesis, University of Tasmania, Hobart. 63 pp.
Eastoe, C.J., 1978. A fluid inclusion study of the Panguna porphyry
copper deposit, Bougainville, Papua New Guinea. Economic
Geology 73, 721–748.
Eastoe, C.J., Solomon, M., Garcia Palomero, F., 1986. Sulphur
isotope study of massive and stockwork pyrite deposits at Rio
Tinto, Spain. Transactions of the Institution of Mining and Metallurgy
95, B201– B207.
Foden, J., Barovich, K., Jane, M., O’Halloran, G., 2001. Sr-isotopic
evidence for Late Neoproterozoic rifting in the Adelaide Geosyncline
at 586 Ma: implications for a Cu ore forming fluid flux.
Precambrian Research 106, 291– 308.
Ford, J.H., Green, D.C., 1977. An oxygen- and hydrogen-isotope
study of the Panguna porphyry-copper deposit, Bougainville.
Journal of the Geological Society of Australia 24, 63– 80.
Fournier, R.O., 1985. The behavior of silica in hydrothermal solutions.
Reviews in Economic Geology 2, 45– 61.
Fournier, R.O., 1999. Hydrothermal processes related to movement
of fluid from plastic into brittle rock in the magmatic-epithermal
environment. Economic Geology 94, 1193– 1212.
Gemmell, J.B., Fulton, R., 2001. Geology, genesis, and exploration
implications of the footwall and hangingwall alteration associated
with the Hellyer VHMS deposit, Tasmania, Australia. Economic
Geology 96, 1003–1035.
Gemmell, J.B., Large, R.R., 1992. Stringer system and alteration
zones underlying the Hellyer volcanic-hosted massive sulphide
deposits, northwestern Tasmania. Economic Geology
87, 620– 649.
Gemmell, J.B., Large, R.R., 1993. Evolution of a VHMS hydrothermal
system, Hellyer deposit, Tasmania, Australia: sulfur isotope
evidence. Resource Geology Special Issue 17, 108–119.
Glen, R., Walshe, J.L., Bouffler, M., Ho, T., Dean, J.A., 1995. Synand
post-tectonic mineralization in the Woodlawn deposit, New
South Wales, Australia. Economic Geology 90, 1857–1864.
Godde´ris, Y., Francois, L.M., Veizer, J., 2001. The early Palaeozoic
carbon cycle. Earth and Planetary Science Letters 190,
181– 196.
Goldfarb, M.S., Converse, D.R., Holland, H.D., Edmond, J.M.,
1983. The genesis of hot spring deposits on the East Pacific
Rise, 21jN. Economic Geology Monograph 5, 184– 197.
Goodfellow, W.D., Peter, J.M., 1996. Sulphur isotope composition
of the Brunswick N. 12 massive sulphide deposit, Bathurst
Mining Camp, New Brunswick: implications for ambient environment,
sulphur source, and ore genesis. Canadian Journal of
Earth Sciences 33, 231– 251.
Green, G.R., Taheri, J., 1992. Stable isotopes and geochemistry as
exploration indicators. Geological Survey of Tasmania Bulletin
70, 84– 91.
Green, G.R., Solomon, M., Walshe, J.L., 1981. The formation of
the volcanic-hosted massive sulphide ore deposit at Rosebery,
Tasmania. Economic Geology 76, 304–338.
Green, G.R., Ohmoto, H., Date, J., Takahashi, T., 1983. Whole-rock
oxygen isotope distribution in the Fukazawa-Kosaka area,
Hokuroku district, Japan, and its potential application to mineral
exploration. Economic Geology Monograph 5, 395– 411.
Gulson, B.L., 1984. Lead isotopes and exploration in Tasmania.
Mineral Exploration and Tectonic Processes in Tasmania.
Geological Society of Tasmania, Tasmanian Division, Hobart,
pp. 33– 35.
Gulson, B.L., Porritt, P.M., 1987. Base metal exploration of the
Mount Read Volcanics, western Tasmania: lead isotope signatures
and genetic implications. Economic Geology 82,
291– 307.
Harris, A.C., Golding, S.D., 2002. New evidence of magmatic-fluid-
related phyllic alteration: implications for the genesis of porphyry
Cu deposits. Geology 30, 335–338.
Heithersay, P., Walshe, J.L., 1995. Endeavour 26 North: a porphyry
copper– gold deposit in the Late Ordovician shoshonitic Goonumbla
Volcanic Complex, New South Wales, Australia. Economic
Geology 90, 1506–1532.
Huston, D.L., 1999. Stable isotopes and their significance for understanding
the genesis of volcanic-hosted massive sulphide
deposits: a review. Reviews in Economic Geology 8, 157– 179.
Huston, D.L., Power, M., Gemmell, J.B., Large, R.R., 1995. Design,
calibration and geological application of the first operational
Australian laser ablation sulfur isotope microprobe.
Australian Journal of Earth Sciences 42, 549– 555.
Jack, D.J., 1989. Hellyer host rock alteration. Unpublished M.Sc.
thesis, University of Tasmania, Hobart. 182 pp.
Jago, J.B., 1979. Tasmanian Cambrian biostratigraphy—a preliminary
report. Australian Journal of Earth Sciences 26, 223– 230.
Jago, J.B., McNeil, A.W., 1997. A late Middle Cambrian shallowwater
trilobite fauna from the Mt Read Volcanics, northwestern
Tasmania. Papers and Proceedings of the Royal Society of Tasmania
131, 85– 90.
Kajiwara, Y., 1971. Sulfur isotope study of the Kuroko-ores of the
Shakanai no. 1 deposits, Akita Prefecture, Japan. Geochemical
Journal 4, 157– 181.
Kaufman, A.J., Knoll, A.H., 1995. Neoproterozoic variations in the
carbon-isotopic composition of seawater: stratigraphic and biogeochemical
implications. Precambrian Research 73, 27–50.
Khin Zaw, Gemmell, J.B., Large, R.R., Mernagh, T.P., Ryan, C.G.,
1996. Evolution and source of ore fluids in the stringer system,
Hellyer VHMS deposit, Tasmania, Australia: evidence from
fluid inclusion microthermometry and geochemistry. Ore Geology
Reviews 10, 251–278.
Large, R.R., 1992. Australian volcanic-hosted massive sulphide
deposits: features, styles, and genetic models. Economic Geology
87, 471– 510.
Large, R.R., Doyle, M.G., Raymond, O.L., Cooke, D.R., Jones,
A.T., Heasman, L., 1996. Evaluation of the role of Cambrian
granites in the genesis of world class VHMS deposits in Tasmania.
Ore Geology Reviews 10, 215– 230.
Lusk, J., 1972. Examination of volcanic-exhalative and biogenic
origins for sulfur in the stratiform massive sulphide deposits
of New Brunswick. Economic Geology 67, 169– 183.
Lydon, J.W., 1996. Characteristics of volcanogenic massive sulphide
deposits: interpretation in terms of hydrothermal convection
systems and magmatic hydrothermal systems. Boletin
Geolo´gico y Minero 107, 215– 264.
McArthur, G.J., 1996. Textural evolution of the Hellyer massive
sulphide deposit. Unpublished Ph.D. thesis, University of Tasmania,
Hobart. 272 pp.
McArthur, G.J., Dronseika, E.V., 1990. Que River and Hellyer
zinc – lead – silver deposits. Australasian Institute of Mining
and Metallurgy Monograph 14, 1229– 1239.
McCrea, J.M., 1950. The isotope chemistry of carbonates and a
paleotemperature scale. Journal of Chemistry and Physics 18,
849–857.
Meffre, S., Berry, R.F., Hall, M., 2000. Cambrian metamorphic
complexes in Tasmania: tectonic implications. Australian Journal
of Earth Sciences 47, 971– 985.
Offler, R., Whitford, D.J., 1992. Wall – rock alteration and metamorphism
of a volcanic-hosted massive sulphide deposit at Que
River, Tasmania: petrology and mineralogy. Economic Geology
87, 686–705.
Ohmoto, H., 1996. Formation of volcanogenic massive sulfide
deposits. Ore Geology Reviews 10, 135–177.
Ohmoto, H., Goldhaber, M.B., 1997. Sulfur and carbon isotopes.
In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore
Deposits, 3rd edition Wiley, New York, pp. 517–611.
Ohmoto, H., Lasaga, A.C., 1982. Kinetics of reactions between
aqueous sulfates and sulphides in hydrothermal systems. Geochimica
et Cosmochimica Acta 46, 1727–1745.
Ohmoto, H., Drummond, S.E., Eldridge, C.S., Pisutha-Arnond, V.,
Lenagh, T.C., 1983. Chemical processes of ore formation. Economic
Geology Monograph 5, 570– 604.
O’Neil, J.R., Clayton, R.N., Meyeda, T.K., 1969. Oxygen isotope
fractionation in divalent metal carbonates. Journal of Chemistry
and Physics 51, 5547–5558.
Pisutha-Arnond, V., Ohmoto, H., 1983. Thermal history, and
chemical and isotopic composition of the ore-forming fluids
responsible for the Kuroko massive sulphide deposits in the
Hokuroku district of Japan. Economic Geology Monograph 5,
523– 558.
Polya, D.A., Solomon, M., Eastoe, C.J., Walshe, J.L., 1986. The
Murchison Gorge, Tasmania—a possible cross-section through
a massive sulphide system. Economic Geology 81, 1341– 1355.
Ramsden, A.R., Kinealy, K.M., Creelman, R.A., French, D.H.,
1990. Precious and base metal mineralogy of the Hellyer volcanogenic
massive sulphide deposit, N.W. Tasmania—a study by
electron microprobe. In: Gray, P.M.S., Castle, J.F., Vaughan,
D.J., Warner, N.A. (Eds.), Sulphide Deposits—Their Origin
and Processing. Institution of Mining and Metallurgy, London,
pp. 49– 71.
Reid, R.O., 2001. Cambrian intrusion-related copper mineralisation
at the Thomas Creek prospect, southwestern Tasmania. Unpublished
Master of Economic Geology thesis, University of Tasmania,
Hobart. 92 pp.
Sasaki, A., 1974. Isotopic data of Kuroko deposits. Mining Geology
Special Issue 6, 389– 397.
Sawka, W.N., Heizler, M.T., Kistler, R.W., Chappell, B.W., 1990.
Geochemistry of highly fractionated I- and S-type granites from
the tin– tungsten province of western Tasmania. Geological Society
of America Special Paper 246, 161–179.
Schardt, C., Cooke, D.R., Gemmell, J.B., Large, R.R., 2001. Geochemical
modelling of the zoned footwall alteration pipe,
Hellyer VHMS deposit, western Tasmania, Australia. Economic
Geology 96, 1037–1054.
Sharpe, R., 1991. The Hellyer baritic and siliceous caps. Unpublished
Honours B.Sc. thesis, University of Tasmania, Hobart.
114 pp.
Sheppard, S.M.F., Schwarcz, H.P., 1970. Fractionation of carbon
and oxygen isotopes and magnesium between coexisting metamorphic
calcite and dolomite. Contributions to Mineralogy and
Petrology 26, 161– 198.
Solomon, M., 1999. Discussion: sulphur isotope composition of the
Brunswick no. 12 massive sulphide deposit, Bathurst mining
camp, New Brunswick: implications for ambient environment,
sulphur source, and ore genesis. Canadian Journal of Earth Sciences
36, 1 – 5.
Solomon, M., Gaspar, O.C., 2001. Textures of the Hellyer volcanichosted
massive sulphide deposit, Tasmania—the ageing of a
sulphide sediment on the sea floor. Economic Geology 96,
1513– 1534.
Solomon, M., Groves, D.I., 2000. The geology and origin of Australia’s
mineral deposits. Centres of Ore Deposit Research and
Global Metallogeny, Hobart and Perth. 1002 pp.
Solomon, M., Khin Zaw, M., 1997. Formation of the Hellyer volcanogenic
massive sulphide deposit on the sea floor. Economic
Geology 92, 686–695.
Solomon, M., Yang, J., 2000. Explaining variation in VHMS ores
(e.g., Hokuroku, Hellyer, and Mt. Lyell): the likely role of fractures,
deep footwall permeability, and rock buffering capacity.
Geological Society of Australia Abstracts 59, 466.
Solomon, M., Quesada, C., 2003. Zn –Pb –Cu massive sulphide
deposits: brine pool types occur in collisional orogens, black
smoker types in backarc and/or arc basins. Geology 31,
1029–1032.
Solomon, M., Eastoe, C.J., Walshe, J.L., Green, G.R., 1988. Mineral
deposits and sulfur isotope abundances in the Mount Read
Volcanics between Que River and Mount Darwin, Tasmania.
Economic Geology 83, 1307– 1328.
Solomon, M., Tornos, F., Gaspar, O.C., 2002. Explanation for many
of the unusual features of the massive sulfide deposits of the
Iberian pyrite belt. Geology 30, 87–90.
Stanton, R.L., Rafter, T.A., 1966. The isotopic constitution of sulphur
in some stratiform lead–zinc ores. Mineralium Deposita 1,
16– 29.
Turner, N.J., 1989. Precambrian. Geological Society of Australia
Special Publication 15, 5 –46.
Vanko, D.A., Bonnin-Mosbah, M., Philippot, P., Roedder, E.,
Sutton, S.R., 2001. Fluid inclusions in quartz from oceanic
hydrothermal specimens and the Bingham, Utah, porphyry-Cu
deposit: a case study with PIXE and SXRF. Chemical Geology
171, 227– 238.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F.,
Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T.,
Korte, K., Pawellek, F., Podlaha, O.G., Strauss, H., 1999.
87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater.
Chemical Geology 161, 59– 88.
Von Damm, K.L., 1995. Controls on the chemistry and temporal
variability of seafloor hydrothermal fluids. Geophysical Monograph
91, 222–247.
Waters, J.C., Wallace, D.B., 1992. Volcanology and sedimentology
of the host succession to the Hellyer and Que River volcanichosted
massive sulphide deposits, northwestern Tasmania. Economic
Geology 87, 650–666.
Whitford, D.J., Sun, S.-S., Togashi, Y., 1982. Petrological and geochemical
studies at Que River, Part 3. CSIRO Restricted Investigation
Report 1332R (34 pp.).
Whitford, D.J., Korsch, M.J., Solomon, M., 1992. Strontium
isotope studies of barites: implications for the origin of base
metal mineralization in Tasmania. Economic Geology 87,
953– 959.
Whitford, D.J., Sharpe, R., Gemmell, J.B., 1993. Origin of barite
from the Hellyer VHMS deposit, Tasmania: a Sr isotopic study.
Geological Society of Australia Abstracts Series 24, 75.
Wyman, W.F., 2001. Cambrian granite-related hydrothermal alteration
and Cu–Au mineralisation in the southern Mt Read Volcanics,
western Tasmania. Unpublished Ph.D. thesis, University
of Tasmania, Hobart. 343 pp.
Yang, J., Large, R.R., 2001. Computational modelling of hydrothermal
ore-forming fluid migration in complex earth structures.
In: Xie, H., Wang, Y., Jiang, Y., (Eds.), Computer
Applications in the Mineral Industries. Swets and Zeitlinger,
Lisse, pp. 115– 120.
Zheng, Y.-F., Hoefs, J., 1993. Carbon and oxygen isotopic covariation
in hydrothermal calcites. Theoretical modeling on mixing
processes and application to Pb–Zn deposits in the Harz Mountains,
Germany. Mineralium Deposita 28, 79–89." name="eprints.referencetext" />
<meta content="Solomon, M. and Gemmell, J.B. and Zaw, K. (2004) Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes. Ore Geology Reviews, 25 (1-2). pp. 89-124. ISSN 0169-1368" name="eprints.citation" />
<meta content="http://eprints.utas.edu.au/2051/1/Solomon.Gemmell.Zaw.OGR.2004.pdf" name="eprints.document_url" />
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
<meta content="Nature and origin of the fluids responsible for forming the Hellyer
Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes " name="DC.title" />
<meta content="Solomon, M." name="DC.creator" />
<meta content="Gemmell, J.B." name="DC.creator" />
<meta content="Zaw, K." name="DC.creator" />
<meta content="260100 Geology" name="DC.subject" />
<meta content="The Hellyer massive sulphide deposit lies within the Mount Read Volcanics province of western Tasmania. Before mining, it consisted largely of pyrite, sphalerite, galena, arsenopyrite and chalcopyrite, and was overlain by discontinuous barite–sulphide and/or silica–sulphide assemblages. It overlay a downward-tapering cone of hydrothermally altered rocks that shows concentric
mineral zonation and contains steeply inclined veins containing sulphide and/or barite. New laser ablation and existing conventional sulphur isotopic compositions of sulphides from the massive sulphide ore range from -5.0 per mil to 12.2 per mil. There is no significant spatial variation in sulphur isotopic composition in the sulphide ore, or evidence of significant change in the
textural paragenesis, but there is considerable variation at millimetre scale within and between minerals. Apart from the few negative values, which may be of biogenic origin, the sulphur data can be explained by mixtures of sulphur reduced from seawater sulphate and that derived directly or indirectly from magma. The sulphur of the barite cap and the barite veins in the footwall (mostly 33.5–46.0 per mil) is probably also derived from seawater sulphate, and radiogenic 87Sr/86Sr values in the barite (0.70989–0.71144) suggest fluid circulation deep into the basement. delta 34 S values of disseminated sulphides in the footwall
alteration cone are like those of overlying ore, the aqueous sulphur being totally reduced due to low fluid velocities and protracted rock interaction. However, unusually high delta 34 S sulphide values (up to 41.4 per mil) are found in some of the footwall vein sulphides, probably because in these veins the fluid velocities are enhanced and rock interaction limited, so that pyrite
supersaturation may occur before reduction of entrained seawater sulphate is complete. High delta 34 S sulphide values (up to 45.6 per mil) also occur in ‘‘unaltered’’ volcanic rock outside the alteration cone and may be the product of local convection of seawater prior
to, during, or (most probably) after massive sulphide mineralization. Fluid delta 18 O values calculated from isotopic analyses of quartz in footwall veins (8.5–11.8 per mil) and Th data range between 4.4 per mil and 3.1 per mil. Dolomite occurs with chlorite in the core of the footwall alteration cone immediately below the massive
sulphide. Its isotopic composition (delta 13 C=1.5 to 2.8, delta 18 O=8.2–18.3 per mil) may reflect precipitation from an acid, seawaterderived, fluid having delta 13 C=1 per mil(the ambient seawater value), and delta 18 O ranging from 0 per mil to 6 per mil, or, alternatively, its
composition is the result of mixing between modified seawater at 150 degrees C (delta 18 O=6 per mil) with 1% of fluid at 350 degrees C having delta 13 C= -6 and delta 18 O=0 per mil. Dolomites in the footwall veins (delta 13 C= -1.8 to 1.7, delta 18 O= 9.3–14.2 per mil) could be derived from an acid, seawater-derived fluid with negative delta 18 O values, or a fluid that has interacted with 600–700 Ma old, 13 C-enriched carbonates in the deep footwall during convective circulation. Both the chlorite-associated and the vein carbonates contain highly radiogenic Sr, possibly derived from Devonian metamorphic fluids.
A re-interpretation of the fluid inclusion data of Khin Zaw et al. [Ore Geol. Rev. 10 (1996) 251] shows that there are three groups of fluids in the quartz of veins in the altered footwall, viz. (a) saline (6.6–14.8 wt.%) with Th = 170–246 degrees C, high K/Na, K/Ca and K/Fe values (fluid 1); (b) of similar salinity and temperature but with low K/Na, K/Ca and K/Fe values (fluid 2); and
(c) an additional fluid of low salinity (2.9–7.0 wt.%) with Th = 289–322 degrees C, element ratios unknown (fluid 3). Fluid 1 has cation ratios like those of magmatic fluids in the K-silicate and phyllosilicate zones of the Panguna and Endeavour 26N porphyry copper deposits. Combined with the lack of alternative source of salts in the pre-ore rock sequences at Hellyer, fluid 1 is thought to be at least partly magmatic. Fluid 2 has cation ratios like those of modern black smoker and Kuroko ore-forming
fluids, and was probably derived from both magmatic fluid and seawater; fluid 3 may be evolved seawater like that forming the deposits of the Hokuroku Basin.
It is suggested that a pluton or plutonic complex of mixed crustal and lithospheric mantle parentage, like that of the volcanic rocks hosting the Hellyer orebody, was emplaced at several km depth below the deposit during faulting related to crustal extension. The heated zone over and around the pluton displaying plastic behaviour was sealed off from the overlying brittle zone in which groundwater (modified seawater) underwent convection due to heat transfer across the brittle-plastic boundary.
The seal was broken intermittently due to tectonic extension or increased fluid pressure in the pluton, and magmatic fluid joined with convecting groundwater in the rising plume, leading to fluid mixing. Upward flow was focused on the Eastern Fault, the fracture system responsible for forming the basin in which the ore sulphides were sedimented." name="DC.description" />
<meta content="2004-08" name="DC.date" />
<meta content="Article" name="DC.type" />
<meta content="PeerReviewed" name="DC.type" />
<meta content="application/pdf" name="DC.format" />
<meta content="http://eprints.utas.edu.au/2051/1/Solomon.Gemmell.Zaw.OGR.2004.pdf" name="DC.identifier" />
<meta content="http://dx.doi.org/10.1016/j.oregeorev.2003.11.001" name="DC.relation" />
<meta content="Solomon, M. and Gemmell, J.B. and Zaw, K. (2004) Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes. Ore Geology Reviews, 25 (1-2). pp. 89-124. ISSN 0169-1368" name="DC.identifier" />
<meta content="http://eprints.utas.edu.au/2051/" name="DC.relation" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/BibTeX/epprod-eprint-2051.bib" title="BibTeX" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/ContextObject/epprod-eprint-2051.xml" title="OpenURL ContextObject" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/ContextObject::Dissertation/epprod-eprint-2051.xml" title="OpenURL Dissertation" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/ContextObject::Journal/epprod-eprint-2051.xml" title="OpenURL Journal" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/DC/epprod-eprint-2051.txt" title="Dublin Core" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/DIDL/epprod-eprint-2051.xml" title="DIDL" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/EndNote/epprod-eprint-2051.enw" title="EndNote" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/HTML/epprod-eprint-2051.html" title="HTML Citation" type="text/html; charset=utf-8" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/METS/epprod-eprint-2051.xml" title="METS" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/MODS/epprod-eprint-2051.xml" title="MODS" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/RIS/epprod-eprint-2051.ris" title="Reference Manager" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/Refer/epprod-eprint-2051.refer" title="Refer" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/Simple/epprod-eprint-2051text" title="Simple Metadata" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/Text/epprod-eprint-2051.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/XML/epprod-eprint-2051.xml" title="EP3 XML" type="text/xml" />

  </head>
  <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
    
    <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>




<table width="795" border="0" cellspacing="0" cellpadding="0">
  <tr>
    <td><script language="JavaScript1.2">mmLoadMenus();</script>
      <table border="0" cellpadding="0" cellspacing="0" width="795">
        <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
        <tr>
          <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
        </tr>
        <tr>
          <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
          <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
          <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
          <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
          <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
          <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
          <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
          <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
          <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
          <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
          <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
        </tr>
        <tr>
          <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
          <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
        </tr>
        <tr>
          <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
          <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
        </tr>
      </table></td>
  </tr>
    <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
      <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
      <td align="right" style="white-space: nowrap">
        <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
          <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
          <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
          <input type="hidden" name="_order" value="bytitle" />
          <input type="hidden" name="basic_srchtype" value="ALL" />
          <input type="hidden" name="_satisfyall" value="ALL" />
        </form>
      </td>
    </tr></table></td></tr>
  <tr>
    <td class="toplinks"><!-- InstanceBeginEditable name="content" -->


<div align="center">
  
  <table width="720" class="ep_tm_main"><tr><td align="left">
    <h1 class="ep_tm_pagetitle">Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes</h1>
    <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Solomon, M.</span> and <span class="person_name">Gemmell, J.B.</span> and <span class="person_name">Zaw, K.</span> (2004) <xhtml:em>Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes.</xhtml:em> Ore Geology Reviews, 25 (1-2). pp. 89-124. ISSN 0169-1368</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2051/1/Solomon.Gemmell.Zaw.OGR.2004.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2051/1/Solomon.Gemmell.Zaw.OGR.2004.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />2769Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2588" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1016/j.oregeorev.2003.11.001">http://dx.doi.org/10.1016/j.oregeorev.2003.11.001</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">The Hellyer massive sulphide deposit lies within the Mount Read Volcanics province of western Tasmania. Before mining, it consisted largely of pyrite, sphalerite, galena, arsenopyrite and chalcopyrite, and was overlain by discontinuous barite–sulphide and/or silica–sulphide assemblages. It overlay a downward-tapering cone of hydrothermally altered rocks that shows concentric&#13;
mineral zonation and contains steeply inclined veins containing sulphide and/or barite. New laser ablation and existing conventional sulphur isotopic compositions of sulphides from the massive sulphide ore range from -5.0 per mil to 12.2 per mil. There is no significant spatial variation in sulphur isotopic composition in the sulphide ore, or evidence of significant change in the&#13;
textural paragenesis, but there is considerable variation at millimetre scale within and between minerals. Apart from the few negative values, which may be of biogenic origin, the sulphur data can be explained by mixtures of sulphur reduced from seawater sulphate and that derived directly or indirectly from magma. The sulphur of the barite cap and the barite veins in the footwall (mostly 33.5–46.0 per mil) is probably also derived from seawater sulphate, and radiogenic 87Sr/86Sr values in the barite (0.70989–0.71144) suggest fluid circulation deep into the basement. delta 34 S values of disseminated sulphides in the footwall&#13;
alteration cone are like those of overlying ore, the aqueous sulphur being totally reduced due to low fluid velocities and protracted rock interaction. However, unusually high delta 34 S sulphide values (up to 41.4 per mil) are found in some of the footwall vein sulphides, probably because in these veins the fluid velocities are enhanced and rock interaction limited, so that pyrite&#13;
supersaturation may occur before reduction of entrained seawater sulphate is complete. High delta 34 S sulphide values (up to 45.6 per mil) also occur in ‘‘unaltered’’ volcanic rock outside the alteration cone and may be the product of local convection of seawater prior&#13;
to, during, or (most probably) after massive sulphide mineralization. Fluid delta 18 O values calculated from isotopic analyses of quartz in footwall veins (8.5–11.8 per mil) and Th data range between 4.4 per mil and 3.1 per mil. Dolomite occurs with chlorite in the core of the footwall alteration cone immediately below the massive&#13;
sulphide. Its isotopic composition (delta 13 C=1.5 to 2.8, delta 18 O=8.2–18.3 per mil) may reflect precipitation from an acid, seawaterderived, fluid having delta 13 C=1 per mil(the ambient seawater value), and delta 18 O ranging from 0 per mil to 6 per mil, or, alternatively, its&#13;
composition is the result of mixing between modified seawater at 150 degrees C (delta 18 O=6 per mil) with 1% of fluid at 350 degrees C having delta 13 C= -6 and delta 18 O=0 per mil. Dolomites in the footwall veins (delta 13 C= -1.8 to 1.7, delta 18 O= 9.3–14.2 per mil) could be derived from an acid, seawater-derived fluid with negative delta 18 O values, or a fluid that has interacted with 600–700 Ma old, 13 C-enriched carbonates in the deep footwall during convective circulation. Both the chlorite-associated and the vein carbonates contain highly radiogenic Sr, possibly derived from Devonian metamorphic fluids.&#13;
A re-interpretation of the fluid inclusion data of Khin Zaw et al. [Ore Geol. Rev. 10 (1996) 251] shows that there are three groups of fluids in the quartz of veins in the altered footwall, viz. (a) saline (6.6–14.8 wt.%) with Th = 170–246 degrees C, high K/Na, K/Ca and K/Fe values (fluid 1); (b) of similar salinity and temperature but with low K/Na, K/Ca and K/Fe values (fluid 2); and&#13;
(c) an additional fluid of low salinity (2.9–7.0 wt.%) with Th = 289–322 degrees C, element ratios unknown (fluid 3). Fluid 1 has cation ratios like those of magmatic fluids in the K-silicate and phyllosilicate zones of the Panguna and Endeavour 26N porphyry copper deposits. Combined with the lack of alternative source of salts in the pre-ore rock sequences at Hellyer, fluid 1 is thought to be at least partly magmatic. Fluid 2 has cation ratios like those of modern black smoker and Kuroko ore-forming&#13;
fluids, and was probably derived from both magmatic fluid and seawater; fluid 3 may be evolved seawater like that forming the deposits of the Hokuroku Basin.&#13;
It is suggested that a pluton or plutonic complex of mixed crustal and lithospheric mantle parentage, like that of the volcanic rocks hosting the Hellyer orebody, was emplaced at several km depth below the deposit during faulting related to crustal extension. The heated zone over and around the pluton displaying plastic behaviour was sealed off from the overlying brittle zone in which groundwater (modified seawater) underwent convection due to heat transfer across the brittle-plastic boundary.&#13;
The seal was broken intermittently due to tectonic extension or increased fluid pressure in the pluton, and magmatic fluid joined with convecting groundwater in the rising plume, leading to fluid mixing. Upward flow was focused on the Eastern Fault, the fracture system responsible for forming the basin in which the ore sulphides were sedimented.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">Definitive version is available online at http://www.sciencedirect.com/</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Hellyer; Tasmania; Australia; Massive sulphide deposit; Stable isotopes</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2051</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">10 Oct 2007 03:44</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2051;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2051">item control page</a></p>
  </td></tr></table>
</div>



    <!-- InstanceEndEditable --></td>
  </tr>
  <tr>
    <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
    <table width="795" border="0" align="left" cellpadding="0" class="footer">
  <tr valign="top">
<td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
</tr>
<tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
      <tr valign="top">
        <td width="68%" class="footer">Authorised by the University Librarian<br />
© University of Tasmania ABN 30 764 374 782<br />
      <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
        <td width="32%"><div align="right">
            <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
            <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
            </a></p>
        </div></td>
      </tr>
      <tr valign="top">
        <td><p>  </p></td>
        <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
      </tr>
    </table>
    <!-- #EndLibraryItem -->
    <div align="center"></div></td>
  </tr>
</table>

  </body>
</html>